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Discrete tomography is a well-established method to investigate finite point sets,

in particular finite subsets of periodic systems. Here, we start to develop an

efficient approach for the treatment of finite subsets of mathematical

quasicrystals. To this end, the class of cyclotomic model sets is introduced,

and the corresponding consistency, reconstruction and uniqueness problems of

the discrete tomography of these sets are discussed.

1. Introduction

Discrete tomography is concerned with the inverse problem of

retrieving information about some discrete object from

(generally noisy) information about its incidences with certain

query sets. A typical example is the reconstruction of a finite

point set from its line sums in a small number m of directions.

The term X-ray (or X-ray projection) is a generic name here

which stands for a mechanism that produces weighted

projection data. More precisely, a (discrete parallel) X-ray of a

finite subset of Euclidean d-space Rd in direction u gives the

number of points in the set on each line in Rd parallel to u.

[This concept should not be misunderstood in the sense of

diffraction theory, where X-rays provide rather different

information on the underlying structure that is based on

statistical pair correlations; compare with Guinier (1994),

Cowley (1995) and Fewster (2003).]

Many papers focus on the discrete tomography of subsets of

lattices since lattices are good models for crystalline structures.

However, nature provides us also with structured non-lattice

sets, the so-called quasicrystals. In the present paper, we shall

investigate the discrete tomography of systems of aperiodic

order, more precisely, of so-called model sets (or mathematical

quasicrystals), which are commonly accepted as a math-

ematical model for perfect quasicrystalline structures in

nature (Steurer, 2004). As model sets possess a ‘dimensional

hierarchy’, which means that any model set in d dimensions

can be sliced into model sets of dimension d� 1, solving the

reconstruction problem for two-dimensional systems with

aperiodic order lies at the heart of solving the corresponding

problem in three dimensions.

The main motivation for our interest in the discrete

tomography of model sets comes from the demand of ma-

terials science to reconstruct three-dimensional (quasi)crystals

or planar layers of them from their images obtained with

quantitative high-resolution transmission electron microscopy

(HRTEM) in a small number of directions.

In fact, in Schwander et al. (1993) and Kisielowski et al.

(1995), the technique QUANTITEM (quantitative analysis of

the information coming from transmission electron micros-

copy) is described, which is based on HRTEM and can

effectively measure the number of atoms lying on lines parallel

to certain directions. At present, the measurement of the

number of atoms lying on a line can only be achieved for some

crystals; see Schwander et al. (1993) and Kisielowski et al.

(1995). However, it is reasonable to expect that future

developments in technology will improve this situation.

Roughly speaking, planar model sets are projections of

certain subsets depending on some window W of a higher-

dimensional lattice into the plane. In x3, we define model sets

in general, but we mainly restrict ourselves to a well-known

class of planar model sets, the cyclotomic model sets. On the

one hand, cyclotomic model sets exhibit a particularly nice and

useful algebraic structure, while on the other hand real-world

quasicrystals can be sliced into parallel planar layers that can

be modeled by cyclotomic model sets (Pleasants, 2000). Also,

in a certain sense, cyclotomic model sets can be seen as a direct

generalization of the square lattice Z2, the classical planar

setting of discrete tomography.

Naturally, all classic issues of discrete tomography including

uniqueness, reconstruction and stability [see e.g. the book by

Herman & Kuba (1999) and, in particular, the papers by

Gardner & Gritzmann (1997), Gritzmann et al. (1998),

Gardner et al. (1999), Gritzmann et al. (2000), Alpers et al.

(2001) and Alpers & Gritzmann (2006)] can be studied for

model sets as, in principle, they are just different ground sets

for the potential solutions. As it turns out, however, the more

general setting does disclose some new aspects and the present

paper will stress these. In particular, it is a priori not even clear

how to decide whether a translate of a given finite point set

occurs within an aperiodic structure.

As a matter of fact, previous studies have focused on the

‘anchored’ case that the underlying ground set is located in a

linear space, i.e. in a space with a specified location of the



origin. The X-ray data are then taken with respect to this

localization. This assumption is mainly justified by the fact

that, as point sets, one has the equality t þ Z2
¼ Z2 for all

t 2 Z2. Hence, in the lattice case, one can always assume that –

if a solution exists – it is close to the origin. In the affine and

aperiodic case of planar model sets, it is a priori not clear how

far out solutions may exist and how one can systematically

search for them.

The main result of this paper is, however, that, for cyclo-

tomic model sets (coming from polyhedral windows), all

possible localizations can be determined efficiently. In fact, we

shall solve a corresponding decomposition problem and a

separation problem. This will allow us to reduce tomographic

problems such as reconstruction and uniqueness for cyclo-

tomic model sets to the corresponding classical problems with

certain restrictions. One difference is manifest in the fact that

potential solutions are subsets of a finite list of patches, whose

number typically grows polynomially in size. In fact, using the

algebraic and the geometric structures of cyclotomic model

sets, we show that in a well-defined way the algorithmic

methods that have been developed for the lattice case can be

extended to the discrete tomography of cyclotomic model sets.

[Note, however, as a warning that even in the (linear) lattice

case Z2 these problems are NP-hard for three or more lattice

directions; see Gritzmann et al. (1998) and Gardner et al.

(1999).]

Let us be more specific. By using the Minkowski repre-

sentation of algebraic number fields, we introduce, for

n =2 f1; 2g, the corresponding class of cyclotomic model sets

� � C ffi R2 which live on Z½�n� � C, where �n is a primitive

nth root of unity in C, e.g. �n ¼ expð2�i=nÞ. (Here and in the

following, a subset S of R2 is said to live on a subgroup G ofR2

if its difference set S� S :¼ fs� s0js; s0 2 Sg is a subset of G.

Obviously, this is equivalent to the existence of a suitable

t 2 R2 such that S � t þG.) The Z-module Z½�n� is the ring of

integers in the nth cyclotomic field Qð�nÞ and, for

n =2 f1; 2; 3; 4; 6g, when viewed as a subset of the plane, is

dense; see x2 for details. In contrast, (cyclotomic) model sets �
are Delone sets, i.e. they are uniformly discrete and relatively

dense. In fact, model sets are even Meyer sets, meaning that

also ��� is uniformly discrete; see Moody (2000). It turns

out that, except for the cyclotomic model sets living on Z½�n�

with n 2 f3; 4; 6g (these are exactly the translations of the

square and the triangular lattice, respectively), cyclotomic

model sets � are aperiodic, meaning that they have no

translational symmetries. Well-known examples with N-fold

cyclic symmetry are the vertex sets of the square tiling

(n ¼ N ¼ 4), the triangle tiling (2n ¼ N ¼ 6), the Ammann–

Beenker tiling (n ¼ N ¼ 8), the Tübingen triangle tiling

(2n ¼ N ¼ 10) and the shield tiling (n ¼ N ¼ 12), respec-

tively; see below for details. Observe that 5, 8, 10 and 12 are

standard cyclic symmetries of genuine planar quasicrystals

(Steurer, 2004).

Whether or not one has future applications in materials

science of quasicrystals in mind, the starting point will always

be a specific structure model. This means that the specific type

of the (quasi)crystal is known, and one is confronted with the

X-ray data of an unknown finite subset of it. Let us point out

that the rotational orientation of the probe in an electron

microscope can rather easily be ascertained in the diffraction

mode, prior to taking images in the high-resolution mode,

though a natural choice of a translational origin is not

possible. Hence a first task is to ‘localize’ a given probe within

Z½�n�. To be more specific, suppose X-rays of some planar

(quasi)crystalline set F are taken in some directions

o1; . . . ; om 2 Z½�n� n f0g. Obviously, every point of F is

‘registered’ by every X-ray image, hence F is contained in the

grid

G :¼
\m
i¼1

[
v2F

ðvþ RoiÞ

 !
;

see Definition 8. Of course, in general, G contains many more

points than F, hence does not disclose F. On the other hand,

only those subsets F 0 of G whose X-rays coincide with the

given data are feasible solutions which lie in a translate of the

underlying model set. Hence a first problem is to determine

the decomposition of G into the subsets which are compatible

with the underlying Z-module Z½�n�, i.e. which lie in a common

translate of Z½�n�; see x4 for details. This problem has its origin

in the practice of quantitative HRTEM since, in general, the

X-ray information does not allow us to locate the underlying

Z-module Z½�n�. Using standard results of algebra, we will

actually show much more, namely that the solution of this

decomposition problem only depends on n and the given Z½�n�-

directions but not on the specific X-ray data. Hence, concep-

tually, we can consider the different equivalence classes

separately.

Of course, even if a Z½�n�-equivalence class of the grid G

contains a set F 0 whose X-rays coincide with the given data,

this set need not belong to the underlying cyclotomic model

set. Hence it is clear that additional constraints that are

induced by the construction rules of the underlying model set

have to be satisfied to guarantee feasibility. One possible

approach could be to first reconstruct a potential solution that

is compatible with the given X-ray data and then check

whether it actually belongs to the underlying model set.

Unfortunately, this approach does not lead to an efficient

algorithm (see Remark 21). Therefore, we use the specific

structure of model sets (originating from some window

through a projection process) and determine which subsets of

G can possibly arise. In fact, all possible solutions (that might

actually lie ‘far out’ in the defining model set) can be found

and explored by translating the given window; see x4. For

many types of windows, this separation problem can be

handled by geometric techniques based on the theory of

arrangements; see x5.

The present paper is organized as follows.

As a service to the reader, we begin with two preliminary

sections that put together the notions required and recall

several tools from algebra and the mathematical theory of

quasicrystals. In fact, the algebra is needed not only to prop-

erly explain cyclotomic model sets but is crucial for devising

algorithms for checking containment of points in this structure
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and also yields best-known bounds for the running time of our

basic algorithms. (Of course, in view of the prominent role of

group theory in crystallography and materials science, the

relevance of algebraic methods for our cyclotomic structures

does not really come as a surprise.) In x2, we explain the

algebraic concepts in an elementary way while x3 gives a

concise but sufficiently detailed account of model sets. In

particular, we introduce the special class of cyclotomic model

sets, which will be the central objects of the present paper.

Some examples illustrate the structure and the beauty of

cyclotomic model sets.

The key problems and main results will be formulated in x4;

their proofs will be given in x5.

2. Algebraic background and notation

For all n 2 N and �n a fixed primitive nth root of unity in C

[e.g. �n ¼ expð2�i=nÞ], let Qð�nÞ be the corresponding cyclo-

tomic field, i.e. the smallest intermediate field of the field

extension C=Q that contains �n. Further, with ���n denoting the

complex conjugate of �n, it is well known that Qð�n þ ���nÞ

(defined analogously) is the maximal real subfield ofQð�nÞ, i.e.

Qð�nÞ \ R ¼ Qð�n þ ���nÞ;

see Washington (1997, p. 15). Throughout this text, we shall

use the notation

Kn ¼ Qð�nÞ; Kn ¼ Qð�n þ ���nÞ;On ¼ Z½�n�; On ¼ Z½�n þ ���n�;

where Z½�n� (or Z½�n þ ���n�) is defined as the smallest subring of

C that contains Z and �n (or Z and �n þ ���n). Further, � will

always denote Euler’s phi-function (often also called Euler’s

totient function), i.e.

�ðnÞ ¼ cardðfk 2 Nj1 � k � n and g.c.d.ðk; nÞ ¼ 1gÞ:

Occasionally, we shall identify C with R2.

The set On hosts the corresponding cyclotomic model sets

(cf. x3.2); Kn, Kn and On will be needed for the analysis of the

algebraic structure of On that will allow the relevant algor-

ithmic computations. The following lemma shows how On is

related to On.

Lemma 1. For n � 3, one has:

(a) On is an On-module of rank 2. More precisely, one has

On ¼ On þ On �n, and f1; �ng is an On-basis of On;

(b) Kn is a Kn-vector space of dimension 2. More precisely,

one has Kn ¼ Kn þ Kn�n, and f1; �ng is a Kn-basis of Kn.

Proof. First, we show (a). The linear independence of f1; �ng

over On is clear: by our assumption n � 3, f1; �ng is even

linearly independent over R. For the remainder of the asser-

tion, we prove that all non-negative integral powers �i
n satisfy

�i
n ¼ �þ ��n for suitable �; � 2 On. Using induction, it suffices

to show �2
n ¼ �þ ��n for suitable �; � 2 On. To this end, note

that ���n ¼ �
�1
n and observe that �2

n ¼ �1þ ð�n þ �
�1
n Þ�n.

Claim (b) follows similarly. &

Remark 1. Seen as a point set of R2, On has N-fold cyclic

symmetry, where

N ¼ NðnÞ :¼ l.c.m.ðn; 2Þ ¼
n; if n is even,

2n; if n is odd.

�
ð1Þ

Except for the one-dimensional case n 2 f1; 2g

(O1 ¼ O2 ¼ Z), the crystallographic cases n 2 f3; 6g (trian-

gular latticeO3 ¼ O6, see Fig. 1) and n ¼ 4 (square lattice O4,

see Fig. 1), On is dense in R2. For the latter, note that, by

Lemma 1,On is an On-module of rank 2, whose R-span is all of

R2. For n 2 N n f1; 2; 3; 4; 6g, On is a Z-module of rank � 2

(see Remark 3 below) embedded in R, hence a dense set in R.

Consequently, On is then a dense set in R2.

The following well-known result is needed later to actually

compute the coordinates of On-points. As usual, R� denotes

the group of units of a given ring R.

Proposition 1. (Gauß). One has ½Kn : Q� ¼ �ðnÞ and a Q-basis

of Kn is given by f1; �n; �
2
n; . . . ; ��ðnÞ�1

n g. The field extension

Kn=Q is a Galois extension with Abelian Galois group

GðKn=QÞ ffi ðZ=nZÞ�, where a ðmod nÞ corresponds to the

automorphism given by �n 7 �! �a
n.

Proof. See Theorem 2.5 of Washington (1997) and, for the

statement about the Q-basis, the proof of Proposition 1.4 in

chapter V.1 of Lang (1993). &

Remark 2. Note the identity

ðZ=nZÞ
�
¼ fa ðmod nÞ j ða; nÞ ¼ 1g

and consult Table 3 of Baake & Grimm (2004) for examples of

the explicit structure of GðKn=QÞ.

Corollary 1. If n � 3, one has ½Kn : Q� ¼ �ðnÞ=2. Moreover, the

set f1; ð�n þ ���nÞ; ð�n þ ���nÞ
2; . . . ; ð�n þ ���nÞ

�ðnÞ=2�1
g is a Q-basis

of Kn.

Proof. The statement about the degree ½Kn : Q� is an

immediate consequence of Lemma 1(b), Proposition 1 and the
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Central patches of the square tiling (left) and triangular tiling (right).



‘degree formula’ for field extensions: If E=F=K is an extension

of fields, one has ½E : K� ¼ ½E : F�½F : K� [cf. chapter V.1,

Proposition 1.2 of Lang (1993)]. The statement about the

Q-basis again follows from the proof of Proposition 1.4 in

chapter V.1 of Lang (1993). &

A full Z-module (i.e. a module of full rank) in an algebraic

number field K which contains the number 1 and is a ring is

called an order ofK. It turns out that among the various orders

of K there is one maximal order which contains all the other

orders, namely the ring of integers in K; see chapter 2, x2 of

Borevich & Shafarevich (1966). For cyclotomic fields, one has

the following well-known result.

Proposition 2. For n 2 N, one has:

(a) On is the ring of cyclotomic integers in Kn, and hence is

its maximal order;

(b) On is the ring of integers of Kn, and hence is its maximal

order.

Proof. See Theorem 2.6 and Proposition 2.16 of Washington

(1997). &

Remark 3. It follows from Proposition 2(a) and Proposition 1

that On is a Z-module of rank �ðnÞ with Z-basis

f1; �n; �
2
n; . . . ; ��ðnÞ�1

n g. Likewise, Proposition 2(b) and Corol-

lary 1 imply that, for n � 3, On is a Z-module of rank �ðnÞ=2

with Z-basis f1; ð�n þ ���nÞ; ð�n þ ���nÞ
2; . . . ; ð�n þ ���nÞ

�ðnÞ=2�1
g.

For the subsequent algorithmic computations, the minimum

polynomial MipoQð�nÞ of �n over Q will be needed since it

shows how to replace certain higher powers of �n by sums of

lower ones. As it turns out in Proposition 3, MipoQð�nÞ is

simply the following nth cyclotomic polynomial.

Definition 1. The nth cyclotomic polynomial is given by

Fn :¼
Q
�

ðX � �Þ;

where � runs over all primitive nth roots of unity in C.

Lemma 2. For n 2 N, one has:

(a) Fn is monic and degðFnÞ ¼ �ðnÞ;
(b)

Q
djn Fd ¼ Xn � 1;

(c) Fn 2 Z½X�.

Proof. See chapter VI.3 of Lang (1993). &

Remark 4. Lemma 2 shows that we can compute the nth

cyclotomic polynomial recursively by use of the Euclidean

algorithm in Z½X�.

Proposition 3. (Gauß). The minimum polynomial MipoQð�nÞ

of �n over Q is the nth cyclotomic polynomial Fn.

Proof. By Definition 1, �n is a root of Fn. Now, note that

MipoQð�nÞ is, by definition, the (uniquely determined) monic

polynomial in Q½X� of minimal degree having �n as a root. Of

course, it is a standard fact that degðMipoQð�nÞÞ ¼ ½Kn : Q�;
see Proposition 1.4 in chapter V.1 of Lang (1993). By Propo-

sition 1, one has ½Kn : Q� ¼ �ðnÞ, hence the result follows from

Lemma 2. &

The final result of this preliminary section will provide a

uniform finite upper bound on the number of On-equivalence

classes in arbitrary grids for given X-ray directions.

Proposition 4. If G is a torsion-free Abelian group of rank r

and H is a subgroup which is also of rank r, then the subgroup

index ½G : H� is finite and equals the absolute value of the

determinant of the transition matrix A from any Z-basis of G

to any Z-basis of H.

Proof. See Chapter 2, Lemma 6.1.1 of Borevich & Shafarevich

(1966). &

3. Model sets

Now we first give a brief introduction to model sets and then

we define the class of cyclotomic model sets that will be the

underlying ground structure for the present paper.

3.1. General setting

By definition, model sets arise from so-called cut and project

schemes. These are commutative diagrams of the following

form; compare with Moody (2000) and see Baake et al. (2002)

for a gentle introduction with many illustrations.

Rk
 �
�

Rk
�H �!

�int
H

[ [lattice [dense

�½eLL�  !1�1 eLL �! �int½
eLL�

ð2Þ

Here, H is some locally compact Abelian group, � and �int are

the canonical projections, andeLL is a lattice in Rk
�H, i.e.eLL is

a discrete subgroup of Rk
�H such that the quotient group

ðR
k
�HÞ

�eLL
is compact. Further, �int½

eLL� is a dense subset of H and the

restriction of � to eLL is assumed to be injective. Writing

L :¼ �½eLL�, one can define a map :? : L�!H by

x 7 �!�intð�j
�1
L ðxÞÞ. Then, one has ½L�? ¼ �int½

eLL�. If the map :?

is injective, we denote the inverse of its co-restriction

:? : L�!½L�? by :�? : ½L�?�!L.

In the following, we use the notation A	, A and @A for the

standard topological operators interior, closure and boundary

of a set A in a locally compact Abelian group.
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Definition 2.

(a) Given the cut and project scheme (2), a subset W � H is

called a window if ; 6¼ W	 � W � W	 and W	 is compact.

(b) Given any window W � H, and any t 2 Rd, we obtain a

model set

�ðt;WÞ :¼ t þ�ðWÞ

relative to the cut and project scheme by setting

�ðWÞ :¼ fx 2 Ljx? 2 Wg:

Further, Rk (H) is called the physical (internal) space and W is

also referred to as the window of �ðt;WÞ. The map

:? : L�!H, as defined above, is the so-called star map.

For details about model sets and general background

material, see Moody (2000) and Baake & Moody (2000); see

Baake et al. (2002) for detailed graphical illustrations of the

projection method.

Remark 5. The translation vector t in Definition 2 stresses an

intrinsic character of model sets. While the structure model

specifies the cut and project scheme k, H and eLL, and also the

window W, a natural choice of the origin is usually not

possible.

Remark 6. Without loss of generality, we may assume that the

stabilizer HW of the window W, i.e.

HW :¼ fh 2 HjhþW ¼ Wg;

is the trivial subgroup of H, i.e. HW ¼ f0g. Observe that the

latter is always the case if H is some Euclidean space, i.e. if one

has H ¼ Rd for some suitable d 2 N. Note further that the star

map is a homomorphism of Abelian groups.

The following remark collects some properties of model

sets; for details see Moody (2000).

Remark 7. In the following, for x 2 Rd and r> 0, we denote by

BrðxÞ the open ball of radius r about x. The model set

� :¼ �ðt;WÞ � Rd is a Delone set, meaning that � is both

uniformly discrete [i.e. there is a radius r> 0 such that every

ball of the form BrðxÞ, where x 2 Rd, contains at most one

point of �] and relatively dense [i.e. there is a radius R> 0

such that every ball of the form BRðxÞ, where x 2 Rd, contains

at least one point of �]. Also, � has finite local complexity, i.e.

��� is discrete and closed. [Note that � has finite local

complexity iff for every r> 0 there are, up to translation, only

finitely many point sets (called patches of diameter r) of the

form � \ BrðxÞ, where x 2 Rd.] In fact, � is even a Meyer set

[i.e., in addition, ��� is uniformly discrete].

Further, � is aperiodic, i.e. has no translational symmetries

iff the star map is injective. In fact, the kernel of the star map is

the group of translational symmetries of �. If � is regular, i.e.

the boundary @W of the window W has (Haar) measure 0 in H,

then � is pure point diffractive (cf. Schlottmann, 2000). If � is

generic, i.e. ½L�? \ @W ¼ ;, then � is repetitive. This means

that, given any patch of radius r, there is a radius R such that

any ball BRðxÞ in Rd contains at least one translate of this

patch; see Schlottmann (2000). If � is both generic and

regular, the frequency of repetition of finite patches is well

defined, i.e., for every finite patch, the number of occurrences

of translates of this patch per unit volume in the ball Brð0Þ of

radius r about the origin 0 approaches a positive limit as

r!1; cf. Schlottmann (1998).

For the discrete tomography of aperiodic model sets, one

additional difficulty, in comparison to the crystallographic

case, stems from the fact that it is not sufficient to consider one

pattern and its translates to define the setting. In particular, to

define the analogue of a specific crystal, one has to add all

infinite patterns that emerge as limits of sequences of trans-

lates defined in the local topology (LT). Here, two patterns are

"-close if, after a translation by a distance of at most ", they

agree on a ball of radius 1=" around the origin. If the starting

pattern P is crystallographic, no new patterns are added; but, if

P is a generic aperiodic model set, one ends up with

uncountably many different patterns, even up to translations!

Nevertheless, all of them are locally indistinguishable (LI).

This means that every finite patch in � also appears in any of

the other elements of the LI-class and vice versa; see Baake

(2002) for details.

Remark 8. The entire LI-class of a regular generic model set

�ðWÞ can be shown to consist of all sets t þ�ð� þWÞ, with

t 2 Rd and � such that ½L�? \ @ð� þWÞ ¼ ; (i.e. � is in a

generic position) and all patterns obtained as limits of

sequences t þ�ð�n þWÞ, with all �n in a generic position; see

Baake (2002). Each such limit is then a subset of some

t þ�ð� þWÞ, as � might not be in a generic position. In view

of this complication, we must make sure that we reconstruct

finite subsets of generic model sets. This will be reflected in

Definitions 6 and 7 of x4.

3.2. Cyclotomic model sets

In the present paper, we study the discrete tomography of a

special class of planar model sets, the cyclotomic model sets,

which can be described in algebraic terms and have an

Euclidean internal space. In the following, let n 2 N n f1; 2g.

Before we formally introduce the cut and project scheme from

which the cyclotomic model sets arise, let us consider some

main ingredients.

The elements of the Galois group GðKn=QÞ (see Proposi-

tion 1) come in pairs of complex-conjugate automorphisms.

Let the set f�1; . . . ; ��ðnÞ=2g arise from GðKn=QÞ by choosing

exactly one automorphism from each such pair. Here, we

always choose �1 as the identity rather than the complex

conjugation. Every such choice induces a map
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:e : On�!ðR
2
Þ
�ðnÞ=2

through

z 7 �! z; �2ðzÞ; . . . ; ��ðnÞ=2ðzÞ
� �

:

(Actually, :eand the following map :? are defined onKn, but it

is their restriction to On that is relevant here.)

With the understanding that for �ðnÞ ¼ 2 (i.e. n 2 f3; 4; 6g),

the singleton

ðR2
Þ
�ðnÞ=2�1

¼ ðR2
Þ

0

is the trivial (locally compact) Abelian group {0}, each such

choice induces a map

:? : On�!ðR
2
Þ
�ðnÞ=2�1;

defined by :? :
 0 if n 2 f3; 4; 6g and

z 7 �! �2ðzÞ; . . . ; ��ðnÞ=2ðzÞ
� �

otherwise. Then, ½On�e is a Minkowski representation of the

maximal order On of Kn, see Chapter 2, Section 3 of Borevich

& Shafarevich (1966) and Theorem 2.6 of Washington (1997).

It follows that ½On�e is a (full) lattice in R2
� ðR2

Þ�ðnÞ=2�1. Here,

since R2
� ðR2

Þ�ðnÞ=2�1 is Euclidean, this means that there are

�ðnÞ R-linearly independent vectors in R2
� ðR2

Þ�ðnÞ=2�1

having the property that ½On�e is the Z-span of these vectors;

compare with Chapter 2, Sections 3 and 4 of Borevich &

Shafarevich (1966). In fact, the set

1e; ð�nÞe; . . . ; ð��ðnÞ�1
n Þe� �

has this property; cf. Proposition 2 and Remark 3. Further, the

image ½On�
? is dense in ðR2

Þ�ðnÞ=2�1. This follows for instance

from the existence of a Pisot number of (full) degree �ðnÞ=2 in

On; see Chapter 2, Section 3 of Borevich & Shafarevich (1966)

and Pleasants (2000). Multiplication by such a Pisot number

in the physical space then translates via the map :? into a

contraction in all directions of the internal space, as defined

by the Q-span of the projected basis vectors of the lattice.

Now, the cyclotomic model sets arise from cut and project

schemes of the following form, where we follow Moody

(2000), modified in the spirit of the algebraic setting of

Pleasants (2000).

R2
 �
�

R2
� ðR2

Þ
�ðnÞ=2�1

�!
�int

ðR2
Þ
�ðnÞ=2�1

[ [lattice [dense

On  !
1�1

½On�e �! ½On�
?

ð3Þ

As described above, one has

½On�e¼ n�z; ð�2ðzÞ; . . . ; ��ðnÞ=2ðzÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼z?

� ��� z 2 On

o
:

Recall that for n 6¼ 3; 4; 6 also the first inclusion On � R
2

involves a dense set. Now here is the definition of the class of

cyclotomic model sets; for more details and related general

algebraic settings, see Pleasants (2000).

Definition 3. Given any window W � ðR2
Þ�ðnÞ=2�1, and any

t 2 R2, we obtain a planar model set

�nðt;WÞ :¼ t þ�nðWÞ

relative to the above cut and project scheme (3) [i.e. relative to

any choice of the set f�iji 2 f2; . . . ; �ðnÞ=2gg as described

above] by setting

�nðWÞ :¼ fz 2 Onjz
?
2 Wg:

We set

MðOnÞ :¼ �nðt;WÞ
t 2 R2; W � ðR2

Þ�ðnÞ=2�1 is

a window

���� 	
:

�
Then, the class CM of cyclotomic model sets is defined as

CM :¼
[

n2Nnf1;2g

MðOnÞ:

Remark 9. The set � :¼ �nðt;WÞ � R2 is aperiodic iff

n =2 f3; 4; 6g, i.e. the translates of the square (triangular) lattice

are the only cyclotomic model sets having translational

symmetries; compare with Remark 7. If, for a given n, � is

both generic and regular and, if the window W has m-fold

cyclic symmetry with m a divisor of l.c.m.ðn; 2Þ and all in a

suitable representation of the cyclic group Cm of order m, then

� has m-fold cyclic symmetry in the sense of symmetries of LI-

classes. This means that � and the structure obtained by

applying an appropriate ‘symmetry’ are locally indistinguish-

able (LI); see Baake (2002) for details on the symmetry

concept.

3.2.1. Some examples. We give five examples of cyclotomic

model sets. The first two are periodic of the form

�nð0;WÞ 2 MðOnÞ with n 2 f3; 4g (and hence W ¼ f0g),

while the last three are aperiodic cyclotomic model sets of the

form �nð0;WÞ 2 MðOnÞ, with n 2 f5; 8; 12g (whence having

an internal space of dimension 2).

(a) The planar, generic, regular and periodic cyclotomic

model set with 4-fold cyclic symmetry associated with the well-

known square tiling is the square lattice, which can be

described in algebraic terms as �SQ :¼ �4ð0;WÞ ¼ Z½i� ¼ O4;

see Fig. 1.

(b) The planar, generic, regular and periodic cyclotomic

model set with 6-fold cyclic symmetry associated with the well-

known triangle tiling is the triangle lattice, which can be

described in algebraic terms as �TRI :¼ �3ð0;WÞ ¼ O3; see

Fig. 1.

(c) The planar, generic and regular model set with 8-fold

cyclic symmetry associated with the Ammann–Beenker tiling

(Baake & Joseph, 1990; Ammann et al., 1992; Gähler, 1993)

can be described in algebraic terms as

�AB :¼ fz 2 O8jz
?
2 Wg;

where the star map :? is the Galois automorphism in GðK8=QÞ,
defined by �8 7 �! �3

8, and the window W is the regular octagon

centred at the origin and of unit edge length, with orientation
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as in Fig. 2. This construction also gives a tiling with squares

and rhombi, both having edge length 1; see Fig. 2.

If t 2 R2
n f0g is chosen such that t þW is again in a generic

position (this is true for almost all t 2 R2), the replacement of

W by t þW again leads to an Ammann–Beenker tiling.

Moreover, the two tilings are locally indistinguishable

(compare with Remark 8).

(d) The planar and regular model set with 10-fold cyclic

symmetry associated with the Tübingen triangle tiling (Baake

et al., 1990a,b) can be described in algebraic terms as

�t
TTT :¼ fz 2 O5jz

? 2 t þWg;

where the star map :? is the Galois automorphism in GðK5=QÞ,
defined by �5 7 �! �2

5. Moreover, the window W is the regular

decagon centred at the origin, with vertices in the directions

that arise from the 10th roots of unity by a rotation through

�=10, and of edge length �=ð� þ 2Þ1=2, where � is the golden

ratio, i.e. � ¼ ð51=2
þ 1Þ=2. Furthermore, t is an element of R2.

Note that �0
TTT is not generic, while generic examples are

obtained for almost all t 2 R2. Generic �t
TTT always give a

triangle tiling with long (short) edges of length 1 (1=�); see Fig.

3. Different generic choices of t result in LI Tübingen triangle

tilings (compare again with Remark 8).

(e) The planar and regular model set with 12-fold cyclic

symmetry associated with the shield tiling (Gähler, 1993) can

be described in algebraic terms as

�t
S :¼ fz 2 O12jz

? 2 t þWg;

where the star map :? is the Galois automorphism in

GðK12=QÞ, defined by �12 7 �! �5
12, and the window W is the

regular dodecagon centred at the origin, with vertices in the

directions that arise from the 12th roots of unity by a rotation

through �=12, and of edge length 1. Again, t is an element of

R2. Note that �0
S is not generic, while �t

S is generic for almost

all t 2 R2. The shortest distance between points in a generic

�t
S is ð31=2 � 1Þ=21=2. Joining such points by edges results in a

shield tiling, i.e. a tiling with triangles, squares and so-called

shields, all having edge length ð31=2 � 1Þ=21=2; see Fig. 4 for a

generic example. Different generic choices of t result in locally

indistinguishable shield tilings (compare again with Remark

8).

4. Discrete tomography of planar model sets: problems
and main results

4.1. Consistency, reconstruction and uniqueness

It is clear that each subset of the lattice Z2 is determined

uniquely by one X-ray in an irrational direction. Therefore,

the nontrivial classical problems of discrete tomography

involve lattice directions, i.e. directions spanned by two lattice

points. One now needs the correct analogue of lattice direc-

tions in the framework of cyclotomic model sets.
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Figure 2
A central patch of the eightfold symmetric Ammann–Beenker tiling with
vertex set �AB (left) and the :?-image of �AB inside the octagonal window
in the internal space (right), with relative scale as described in the text.

Figure 3
A central patch of the tenfold symmetric Tübingen triangle tiling.

Figure 4
A central patch of the twelvefold symmetric shield tiling.



Definition 4. Let n 2 N n f1; 2g.
(a) The elements of On n f0g are called On-directions.

(b) For an On-direction o, we denote by Lo the set of lines

t þ Ro with t 2 R, while LOn
o � Lo is the set of module lines in

direction o, i.e. the set of lines t þ Ro in R2 with t 2 On.

Since everyOn-direction is parallel to a non-zero element of

the difference set �nðt;WÞ ��nðt;WÞ � On (Huck, 2006),

the notion of On-directions is indeed the natural extension for

cyclotomic model sets.

Definition 5. Let n 2 N n f1; 2g and let F � R2 be a finite set

which lives onOn, i.e. F � t þOn, where t 2 R2. Furthermore,

let o be an On-direction. Then, the (discrete parallel) X-ray of

F in direction o is the function

XoF : Lo�!N0 :¼ N [ f0g;

defined by

XoFð‘Þ :¼ cardðF \ ‘Þ:

Remark 10. Obviously, XoF has finite support suppðXoFÞ (the

set of lines in direction o that pass through at least one point of

F) and, moreover, P
‘2suppðXoFÞ

XoFð‘Þ ¼ cardðFÞ:

In view of the complications with limits indicated at the end

of x3.1, we will make sure that we reconstruct finite subsets of

generic model sets, i.e. subsets whose :?-image lies in the

interior of the window. This restriction to the generic case is

the proper analogue of the restriction to perfect lattices and

their translates in the classical case.

Definition 6. Let n 2 N n f1; 2g, let W � ðR2
Þ�ðnÞ=2�1 be a

window (cf. Definition 2), and let a star map :? be given, i.e. a

map :? : On�!ðR
2
Þ�ðnÞ=2�1, given by z 7 �! 0, if n 2 f3; 4; 6g,

and given by z 7 �! ð�2ðzÞ; . . . ; ��ðnÞ=2ðzÞÞ otherwise (as

described in Definition 3). Then, the elements of the subset

f�nðt; � þW	Þjt 2 R2; � 2 ðR2
Þ
�ðnÞ=2�1

g

ofMðOnÞ, which are defined by use of the above star map :?,
are called W	MðOnÞ;?

-sets.

Remark 11. Let n 2 N n f1; 2g. Note that, if W � ðR2
Þ�ðnÞ=2�1 is

a window, then its interior W	 is also a window. Note further

that, for n ¼ 4 [n 2 f3; 6g], the set of W	MðOnÞ;?
-sets simply

consists of all translates of the square lattice O4 [triangular

lattice O3].

Definition 7. (Consistency, reconstruction and uniqueness

problem). Let the data be given as in Definition 6. Further, let

o1; . . . ; om be m � 2 pairwise non-parallel On-directions. The

corresponding consistency, reconstruction and uniqueness

problems are defined as follows.

Consistency. Given functions poi
: Loi
�!N0,

i 2 f1; . . . ;mg, whose supports are finite and satisfy

suppðpoi
Þ � L

On
oi

, decide whether there is a finite set F which is

contained in a W	MðOnÞ;?
-set and satisfies Xoi

F ¼ poi
,

i 2 f1; . . . ;mg.

Reconstruction. Given functions poi
: Loi
�!N0,

i 2 f1; . . . ;mg, whose supports are finite and satisfy

suppðpoi
Þ � L

On
oi

, decide whether there exists a finite set F in a

W	MðOnÞ;?
-set that satisfies Xoi

F ¼ poi
, i 2 f1; . . . ;mg, and, if so,

construct one such F.

Uniqueness. Given a finite subset F of a W	MðOnÞ;?
set,

decide whether there is a different finite set F 0 that is also

a subset of a W	MðOnÞ;?
-set and satisfies Xoi

F ¼ Xoi
F 0,

i 2 f1; . . . ;mg.

Note that the parameter n, the directions oi and the window

W are assumed to be fixed, i.e. are not part of the input.

For results on the computational complexity of these

problems in the lattice case (and the Turing machine as the

model of computation), see Gritzmann (1997) and Gardner et

al. (1999).

4.2. The decomposition problem

Now we introduce the problem of how to decompose a grid

(cf. Definition 8) into translates of maximal On-subsets. Note

that the crystallographic cases, namely the triangular lattice

and the square lattice, are included.

Definition 8. Let n 2 N n f1; 2g and let o1; . . . ; om be m � 2

pairwise non-parallel On-directions. Moreover, let

poi
: Loi
�!N0, i 2 f1; . . . ;mg, be functions whose supports

are finite and satisfy

suppðpoi
Þ � L

On
oi
:

Then, the associated grid Gfpoi
ji2f1;...;mgg is defined by

Gfpoi
ji2f1;...;mgg :¼

\m
i¼1

[
‘2suppðpoi

Þ

‘

0@ 1A:

Definition 9. Let n 2 N n f1; 2g. We define an equivalence

relation �n on R2 by setting

x �n y :() x� y 2 On:

If x; y 2 R2 satisfy x �n y, we say that x and y are equivalent

modulo On.
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Definition 10. Decomposition problem. Let n 2 N n f1; 2g, and

let o1; . . . ; om be m � 2 pairwise non-parallel On-directions.

The corresponding decomposition problem is defined as

follows.

Decomposition. Given functions poi
: Loi
�!N0,

i 2 f1; . . . ;mg, whose supports are finite and satisfy

suppðpoi
Þ � L

On
oi

, compute the equivalence classes modulo On

in the associated grid Gfpoi
ji2f1;...;mgg.

Of course, this problem can be reduced to a polynomial

number of membership tests in On. It is, however, not directly

clear how these tests can be performed and, actually, the

algebraic properties of On will be utilized. Also, later a

uniform bound for the number of classes will be given that is

independent of the X-ray data.

Remark 12. The phenomenon of multiple equivalence classes

modulo On in the grid occurs already in the classical lattice

situation; see the left part of Fig. 5. There, no translate of the

finite subset of the square lattice (marked by the connecting

lines) is contained in any of the other equivalence classes.

Also, note the fact that exactly one of the three equivalence

classes has 14 elements (the equivalence class marked by light

grey), whereas the remaining two only have 13 elements; it

follows that this equivalence class (which generates the same

grid as the marked finite subset of the square lattice) would be

the unique solution of the corresponding reconstruction

problem associated with its point set. Hence, the problem of

decomposing the grid into its equivalence classes moduloOn is

the first problem to be solved when dealing with the consis-

tency or the reconstruction problem, also in the classical

planar setting.

4.3. The separation problem

When dealing with the consistency, reconstruction and

uniqueness problems defined above, it is clear from the defi-

nition of W	MðOnÞ;?
-sets that, given n 2 N n f1; 2; 3; 4; 6g, a finite

set F of points in ðR2
Þ�ðnÞ=2�1 and a window W � ðR2

Þ�ðnÞ=2�1,

we have to be able to decide whether F is contained in a

translate of W	. This leads us to the following geometric

separation problem for sets ½F�? � t þW.

Definition 11. Let d 2 N, let P;W � Rd, and let t 2 Rd. We set

SW;tðPÞ :¼ P \ ðt þWÞ

and, further,

SepWðPÞ :¼ SW;tðPÞjt 2 R
d

� �
:

Definition 12. (Separation problem).

Separation. Given a finite set P � Rd and a set W � Rd,

determine SepWðPÞ.

Remark 13. Note that SepWðPÞ contains all subsets of P that

are ‘separable’ from their complement (in P) by a translate of

W. Trivially, one has p 2 t þW iff t 2 p�W. It follows that

SW;tðPÞ ¼ fp 2 Pjt 2 p�Wg: ð4Þ

We will frequently make use of the above equivalence because

it allows us to switch between a separable set SW;tðPÞ and the

set of translation vectors that makes it separable; see Fig. 6 for

an illustration.

4.4. Main algorithmic results

In the following, we apply the real RAM-model of

computation, see e.g. Preparata & Shamos (1985). Here each

of the standard elementary operations on reals counts only

with unit cost.

Our first result shows that the decomposition problem can

be solved efficiently.
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Figure 5
Grids arising from two On-directions: On the left, the grid generated by
the X-rays of a finite subset of a translate of O4 ¼ Z

2 in the two non-
parallel O4-directions ð1; 1Þ and ð1;�2Þ. The three equivalence classes
modulo O4 are marked by different greyscales. On the right, the grid
generated by the X-rays of a finite subset of a translate of �AB in the two
non-parallel O8-directions 1 and �2

8 ¼ i. The two equivalence classes are
also shown.

Figure 6
On the left: If we translate W by t, then fp1; p2g is a subset of t þW but
fp3g is not. On the right: The ‘world of translation vectors’. The point t is
contained in p1 �W and p2 �W but not in p3 �W. Again, we see that
SW;tðPÞ ¼ fp1; p2g. (In this example, the window is centrally symmetric
with respect to the origin, i.e. W ¼ �W.)



Theorem 1. The decomposition problem can be solved in

polynomial time in the real RAM model. More precisely, it is

of complexity Oðs2Þ, where s is the maximum of the cardinal-

ities of the supports of the given X-ray data functions.

The next result deals with the separation problem.

Theorem 2. Let the window W be given as an intersection of

finitely many half-spaces, i.e. W ¼ fxjAx � bg with A 2 Rl�d

and b 2 Rl. (The parameters d, A and b are not part of the

input.) Then, for any finite set P � Rd, the problem of

computing SepW	 ðPÞ can be solved in OðcardðPÞdþ1
Þ opera-

tions.

As a consequence of Theorems 1 and 2, we see that the

standard tomographic algorithms that have been developed

for the lattice case can also be extended to the tomography of

cyclotomic model sets.

Theorem 3. Let W be given as in Theorem 2. Then the

problems Consistency, Reconstruction and Uniqueness as

defined in Definition 7 can be solved with polynomially many

operations and polynomially many calls to an oracle that

solves the same problem on subsets of the plane of cardinality

Oðs2Þ, where s is again the maximum of the cardinalities of the

supports of the given X-ray data functions.

As a simple corollary, we finally note that the case of two

directions can be solved in polynomial time even for cyclo-

tomic model sets.

Corollary 2. When restricted to two On-directions and poly-

topal windows, the problems Consistency, Reconstruction

and Uniqueness as defined in Definition 7 can be solved in

polynomial time in the real RAM-model.

5. Analysis of the problems, proofs and more results

In the following, we give a detailed analysis of the problems

introduced in the previous section, prove the assertions stated

there and obtain more results on the way.

5.1. Tractability of the decomposition problem

We will now show that the number of equivalence classes of

a grid is uniformly bounded by a number that depends on the

given directions but is independent of the X-ray data. This

result will then allow us to prove Theorem 1.

Definition 13. Let n 2 N n f1; 2g and let o1, o2 be two non-

parallel On-directions. We define the complete grid Gfo1;o2g
as

Gfo1;o2g
:¼
\2

i¼1


 [
‘2L

On
oi

‘
�
:

Proposition 5. Let n 2 N n f1; 2g and let o1; o2 be two non-

parallelOn-directions. Then, the complete grid Gfo1;o2g
satisfies

On � Gfo1;o2g
� C and Gfo1;o2g

� Mfo1;o2g
, where one sets

Mfo1;o2g
:¼ linOn

1

��� �	
o1;

1

��� �	
o2

� 	� 
ð5Þ

and �; �; 	; � 2 On are determined by o1 ¼ �þ ��n and

o2 ¼ 	 þ ��n.

Remark 14. Note that the linear independence of fo1; o2g and

f1; �ng over R implies that ��� �	 6¼ 0. Also, by definition,

Mfo1;o2g
is an On-module of rank 2 with basis

fo1=ð��� �	Þ; o2=ð��� �	Þg and Proposition 5 shows that

On � Gfo1;o2g
� Mfo1;o2g

� Kn:

Note further that there are examples where the inclusion

Gfo1;o2g
� Mfo1;o2g

is not an equality. This is because Mfo1;o2g

depends on the scaling of o1 and o2, while Gfo1;o2g
does not. On

the other hand, let 	 2 On and consider the two non-parallel

On-directions 1 and 	 þ �n. Then, by (5) and Lemma 1, one

has

On � Gf1;	þ�ng
� Mf1;	þ�ng

¼ On

and hence Gf1;	þ�ng
¼ Mf1;	þ�ng

¼ On. Further observe that,

for n 2 N n f1; 2; 3; 4; 6g, the complete grid Gfo1;o2g
is a dense

subset of the plane because already its subset On has this

property; cf. Remark 1.

Proof of Proposition 5. The first inclusion is obvious by defi-

nition.

Next, we claim that On � Mfo1;o2g
. Let o 2 On. By Lemma

1(a), there are unique ’; 2 On with o ¼ ’þ  �n. By the

linear independence of fo1; o2g over R, there are unique

x; y 2 R with xo1 þ yo2 ¼ o. Hence,

ðx�þ y	 � ’Þ þ ðx�þ y��  Þ�n ¼ 0

and, using the linear independence of f1; �ng over R, we get

that x�þ y	 � ’ ¼ x�þ y��  ¼ 0. In matrix notation, this

means that

� 	
� �

� 
x

y

� 
¼

’
 

� 
:

Cramer’s rule now implies that

x ¼ ð’��  	Þ=ð��� �	Þ 2 On=ð��� �	Þ

and

y ¼ ð� � �’Þ=ð��� �	Þ 2 On=ð��� �	Þ:

This proves our claim.

Finally, consider g 2 Gfo1;o2g
. By definition, there are

o0; o00 2 On with fgg ¼ ðo0 þ Ro1Þ \ ðo
00 þ Ro2Þ. Moreover,
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there are unique x; y 2 R with g ¼ o0 þ xo1 ¼ o00 þ yo2.

Hence, xo1 þ ð�yÞo2 ¼ o00 � o0 2 On and, by the same calcu-

lation as above, we get that x; y 2 On=ð��� �	Þ. Together with

our first claim, this shows that g 2 Mfo1;o2g
. &

Lemma 3. Mfo1;o2g
is a Z-module of rank �ðnÞ.

Proof. This is an immediate consequence of the facts that

Mfo1;o2g
is an On-module of rank 2 and On is a Z-module of rank

�ðnÞ=2; see Remark 14 and Remark 3. &

The following lemma shows that Mfo1;o2g
, and thus Gfo1;o2g

,

decomposes into finitely many equivalence classes whose

number depends only on fo1; o2g. Note that the symbol _[[ is

used to indicate disjoint unions.

Lemma 4. The subgroup index ½Mfo1;o2g
: On� is finite. Hence,

there are c 2 N and t1; t2; . . . ; tc 2 Mfo1;o2g
such that

Mfo1;o2g
¼

_[[c

i¼1
ðti þOnÞ;

where, without restriction, t1 ¼ 0. It follows that every subset

G of Mfo1;o2g
satisfies the decomposition

G ¼
_[[c

i¼1
ðG \ ðti þOnÞÞ:

Proof. By Lemma 3, Mfo1;o2g
is a Z-module of rank �ðnÞ.

Moreover, Mfo1;o2g
is torsion-free because it is a subset of the

field Kn; see Remark 14. ButOn is a Z-module of rank �ðnÞ as

well; see Remark 3. Now, Proposition 4 yields the result. &

Remark 15. By Proposition 4, the subgroup index

½Mfo1;o2g
: On�

equals the absolute value of the determinant of the transition

matrix A from any Z-basis of Mfo1;o2g
to any Z-basis of On. It

follows that, given the Z-coordinates of o1 and o2 with respect

to the Z-basis f1; �n; �
2
n; . . . ; ��ðnÞ�1

n g of On (cf. Remark 3), one

is able to compute ½Mfo1;o2g
: On�. Note that, for any 	 2 On,

one has

½Mf1;	þ�ng
: On� ¼ 1;

see Remark 14.

Remark 16. Let n 2 N n f1; 2g and let o1; . . . ; om be m � 2

pairwise non-parallel On-directions. For any instance of the

corresponding decomposition problem, the associated grid

Gfpoi
ji2f1;...;mgg satisfies

cardðGfpoi
ji2f1;...;mggÞ � s2;

where

s :¼ maxðfcardðsuppðpoi
ÞÞji 2 f1; . . . ;mggÞ:

Since Gfpoi
ji2f1;...;mgg � Gfo1;o2g

, Proposition 5 shows that the last

part of Lemma 4 applies to Gfpoi
ji2f1;...;mgg.

In the following, we assume that the elements of the

supports of the poi
, i 2 f1; . . . ;mg, are given in the form

oþ Roi for suitable o 2 On. Moreover, we assume that all o’s

and all oi’s are given through their Z-coordinates with respect

to the Z-basis f1; �n; �
2
n; . . . ; ��ðnÞ�1

n g of On (cf. Remark 3).

We now prove Theorem 1, which we restate in a rephrased

form.

Theorem 4. The decomposition problem can be solved with

Oðs2Þ many real number operations.

Proof. The algorithm performs the following steps.

Step 1: By the proof of Lemma 1(a), the Euclidean algor-

ithm in Z½X�, the inductive computability of the nth cyclo-

tomic polynomial Fn ¼ MipoQð�nÞ (cf. Remark 4 and

Proposition 3), the proof of Proposition 5 and the Gaussian

elimination algorithm, we are able to compute the Q-coordi-

nates of the elements of the grid Gfpoi
ji2f1;...;mgg � Kn with

respect to the Q-basis

f1; �n; �
2
n; . . . ; ��ðnÞ�1

n g

of Kn (cf. Proposition 1) efficiently.

Step 2: Since f1; �n; �
2
n; . . . ; ��ðnÞ�1

n g is simultaneously a

Q-basis of Kn and a Z-basis of On (cf. Proposition 1 and

Remark 3), one has for all q0; q1; . . . ; q�ðnÞ�1 2 Q the

equivalence

q0 þ q1�n þ . . .þ q�ðnÞ�1�
�ðnÞ�1
n 2 On

() q0; q1; . . . ; q�ðnÞ�1 2 Z :
ð6Þ

By Step 1, the elements of Gfpoi
ji2f1;...;mgg are given in the form

q0 þ q1�n þ . . .þ q�ðnÞ�1�
�ðnÞ�1
n ;

where q0; q1; . . . ; q�ðnÞ�1 2 Q. Now, proceed as follows: choose

an arbitrary element g of Gfpoi
ji2f1;...;mgg and compute the

Q-coordinates of the differences g� h with respect to

f1; �n; �
2
n; . . . ; ��ðnÞ�1

n g, where h 2 Gfpoi
ji2f1;...;mgg n fgg. By the

above criterion (6), a fixed h lies in the same equivalence class

modulo On as g iff all coordinates of g� h are elements of Z.

Iterate this procedure by successively removing the computed

equivalence classes and proceeding with the remaining subset

of the grid and an arbitrary element therein.

We already saw in Remark 16 that the last part of Lemma 4

applies to Gfpoi
ji2f1;...;mgg. This immediately implies that Step 2

of this algorithm computes the equivalence classes of the grid

modulo On in at most

c :¼ ½Mfo1;o2g
: On� 2 N

iterations. The inequality cardðGfpoi
ji2f1;...;mggÞ � s2 (cf. Remark

16) now completes the proof. &

Remark 17. The proof of Theorem 4 indicates that we actually

do not need the full strength of the real RAM-model of

computation. Rather, a Turing machine model that is
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augmented for algebraic computations suffices, see e.g.

Buchberger et al. (1982). Then, of course, the binary size of the

input matters.

5.2. Tractability of the separation problem

The problem Separation in its general form is interesting on

its own and we show now how to deal with it for windows W

that are open polyhedra, i.e.

W ¼ fxjAx< bg with A 2 Rl�d and b 2 Rl;

where d � 2 is a fixed constant. The ideas presented here can

be generalized to semialgebraic sets, but we prefer to keep the

exposition more elementary. Also, polytopal windows with

N-fold cyclic symmetry, where N is the function from (1), are

most relevant for model sets. (Note that the windows under-

lying the examples in x3.2.1 are polytopes.)

We will begin with some standard facts about hyperplane

arrangements as they are needed to deal with Separation. See

Edelsbrunner et al. (1986) for more information on hyper-

plane arrangements and Agarwal & Sharir (2000) and

Halperin (2004) for surveys that also cover more general

classes of arrangements.

Definition 14. For i 2 f1; . . . ; lg, let ai 2 R
d
n f0g, �i 2 R, and

consider the sets Hi ¼ fxja
T
i x ¼ �ig. Then, Hi is called hyper-

plane and H ¼ fH1; . . . ;Hlg is a hyperplane arrangement in

Rd. The sign vector SVðxÞ of some point x 2 Rd is defined

component-wise via

SViðxÞ :¼
�1 if aT

i x<�i,

0 if aT
i x ¼ �i;

þ1 if aT
i x>�i;

8<: 1 � i � l:

For s 2 f�1; 0gl with

Cs :¼ fxjSVðxÞ ¼ sg 6¼ ;;

Cs is called a (proper) cell of the arrangement H.

Remark 18. The cells of an arrangement are relatively open

sets of various dimensions. In particular, a cell Cs with sign

vector s is full-dimensional if and only if s 2 f�1gl. Of course,

Rd is the disjoint union of all the cells of a hyperplane

arrangement. Fig. 7 gives an illustration.

In view of their general relevance, hyperplane arrange-

ments are well studied and also algorithmically well under-

stood.

Proposition 6. Let H ¼ fH1; . . . ;Hlg be a hyperplane

arrangement in Rd. There exists an algorithm that computes a

set of points meeting each cell of H in OðldÞ operations in the

real RAM model.

Proof. Cf. Theorem 3.3 of Edelsbrunner et al. (1986). See also

Chapter 7 of Edelsbrunner (1987). &

The proof of Theorem 2 will now be based on the following

observation that ties the separation problem to certain

hyperplane arrangements.

Lemma 5. Let P ¼ fp1; . . . ; pqg be a finite set of points in Rd,

let W ¼ fxjAx< bg with A 2 Rl�d, b 2 Rl, and let aT
i denote

the ith row of A, 1 � i � l. For 1 � i � l and 1 � j � q, set

H
ðjÞ
i :¼ fxjaT

i x ¼ ðApj � bÞig:

Further, set

HðW;PÞ :¼ fHðjÞi j1 � i � l; 1 � j � qg:

Then, one has the following:

(a) The set pj �W is an intersection of open half-spaces

defined by the H
ðjÞ
1 ; . . . ;H

ðjÞ
l , more precisely,

pj �W ¼ fxjATx>Apj � bg:

(b) For each cell Cs of the hyperplane arrangement

HðW;PÞ with sign vector s ¼ ðsi;jÞi;j, the following implication

is true:

t; t0 2 Cs ¼) SW;tðPÞ ¼ SW;t0 ðPÞ:

(Of course, the reverse implication is not true in general; see

Fig. 8.)
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Figure 7
A small example for a hyperplane arrangement in the plane. The
hyperplanes are given by Hi ¼ fxja

T
i x ¼ �ig, where a1 ¼ ð�1; 1Þ,

�1 ¼ �1, a2 ¼ ð�1; 4Þ, �2 ¼ 3, a3 ¼ ð0; 1Þ, �3 ¼ 1, a4 ¼ ð�2;�3Þ,
�4 ¼ �4. On the right, the cells are drawn schematically. The
arrangement consists of six points, 16 one-dimensional cells (thick lines)
and 11 full-dimensional cells (grey areas). Some sign vectors are given.
Note that not all vectors in f�1; 0g4 occur as sign vectors of cells; e.g.
ð0; 0; 0; 0Þ and ð�1;þ1;�1;�1Þ are not realized.

Figure 8
This shows in essence the same situation as in Fig. 6, on the right we
added the arrangementHðW;PÞ. Here, SW;tðPÞ ¼ SW;t0 ðPÞ, but t and t0 are
in different full-dimensional cells of the arrangement HðW;PÞ, see
Lemma 5. Therefore the inverse direction of the implication in Lemma
5(b) is not true.



Proof. Part (a) follows from a simple computation:

p�W ¼ fp� xjAx< bg ¼ fxjAðp� xÞ< bg

¼ fxjAx>Ap� bg:

For (b), recall from (4) that

SW;tðPÞ ¼ fpjj1 � j � q; t 2 pj �Wg

for any t 2 Rd. Using (a), we see that t 2 pj �W iff

SV1jðtÞ ¼ . . . ¼ SVljðtÞ ¼ þ1. Now, if t; t0 2 Cs, we have

SVðtÞ ¼ SVðt0Þ ¼ s, concluding the proof. &

Here is a restatement of Theorem 2.

Theorem 5. Let W ¼ fxjAx< bg with A 2 Rl�d and b 2 Rl.

Moreover, let P ¼ fp1; . . . ; pqg be a finite set of points in Rd.

Then, SepWðPÞ can be computed with the aid of at most

OððlqÞdþ1Þ operations in the real RAM model.

Proof. Our algorithm to determine SepWðPÞ performs the

following steps.

Step 1: Compute ðApj � bÞi for 1 � i � l and 1 � j � q, to

specify the hyperplane arrangement HðW;PÞ from Lemma 5.

Step 2: Compute a set T of points meeting every cell of

HðW;PÞ.

Step 3: For each of the points t 2 T obtained in Step 2,

compute SW;tðPÞ.

Step 4: Output the collection of all the SW;tðPÞ.

The correctness of this procedure follows directly from

Lemma 5.

Now we show the complexity assertion. Step 1 needs no

more than OðlqÞ operations. Step 2 requires OððlqÞdÞ opera-

tions by Proposition 6. For Step 3, we decide if t 2 pj �W for

each j. To this end, we test if t satisfies the inequalities

aT
i t> ðApj � bÞi, 1 � i � l, 1 � j � q. This is done with OðlqÞ

operations. In total, we do not need more than

Oðlqþ ðlqÞdlqÞ ¼ OððlqÞdþ1Þ operations. &

Remark 19. As the proof of Theorem 5 shows, if the number of

hyperplanes defining the window W is regarded as constant,

then

card SepW	 ðPÞ
� �

¼ O cardðPÞd
� �

:

Remark 20. Theorem 5 can be generalized to semialgebraic

sets W. The corresponding algorithm is then based on an

analogue of Proposition 6 in the semialgebraic world; see Basu

et al. (1996) and Theorem 2 of Basu et al. (1997).

5.3. On the tractability of consistency, reconstruction and
uniqueness

As a consequence of Theorems 1 and 2, we can now prove

Theorem 3. In the following, we only deal with Consistency in

detail; the proofs for the other two problems are similar. As

Theorem 3 states, we want to reduce Consistency to a

problem in the classical (anchored) case.

The number m 2 N n f1g of X-rays and the different

directions o1; . . . ; om are of course fixed as usual.

AnchoredConsistency. Given s 2 N and poi
: Loi
�!N0,

i 2 f1; . . . ;mg, with finite supports whose cardinalites are

bounded by s, and a finite set S � R2 with at most s2 points.

Decide whether there is a set F contained in S which satisfies

Xoi
F ¼ poi

, i 2 f1; . . . ;mg.

Now we show that for polytopal windows the problem

Consistency for cyclotomic model sets can be reduced to

AnchoredConsistency. Let A be an algorithm for solving

AnchoredConsistency. (In the following, A acts as a black-

box subroutine for the reduction.)

Theorem 6. Let W be given as in Theorem 2. Then Consis-

tency can be solved with polynomially many operations and

polynomially many calls to A.

Proof. The algorithm performs the following steps.

Step 1: Check first the necessary condition that the cardin-

alities P
l2suppðpoi

Þ poi
ðlÞ

coincide for each i. If this is the case, proceed with Step 2.

Otherwise the instance is inconsistent.

Step 2: Compute the elements of the equivalence classes Gi

of the associated grid Gfpo1
;...;pom

g modulo On, say

Gfpo1
;...;pom

g ¼
_[[c

i¼1
Gi � Kn

in terms of their Q-coordinates with respect to the Q-basis
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Figure 9
A ðcardðFÞ � cardðFÞÞ-grid (left-hand side). The subsets of the grid that
conform to the X-ray data correspond to permutation matrices, hence
there are ðcardðFÞÞ! of them. Assume that the internal space is also two-
dimensional and that the star map :? acts as a bijection on the grid points.
Then the grid in the physical space is mapped to a grid in the internal
space (right-hand side). As a concrete example of this situation, we recall
the examples in x3.2.1, e.g. if n ¼ 8 and the star map is defined by 
8 7!


3
8,

then the grid in the physical space can be chosen as a finite patch of the
Z-span linZðf1; 
8gÞ (a lattice in R2). It is in 1–1 correspondence to its
image under the star map. If the window is chosen ‘slim’ enough, covering
a ‘diagonal’ of the image grid, then there is only one of the ðcardðFÞÞ!
solutions (in the internal space) that can be covered by a translate of the
window. Thus, there is also only one single solution in the physical space.



f1; �n; �
2
n; . . . ; ��ðnÞ�1

n g

of Kn (cf. Proposition 1). By Theorem 1, this can be done

efficiently.

Step 3: For all i 2 f1; . . . ; cg, compute the :?-image ½Gi�
? of

Gi. Note that we consider the star map here as a map

:? : Kn�!ðR
2
Þ
�ðnÞ=2�1:

This can be done efficiently. Owing to the definition of

W	MðOnÞ;?
-sets, a solution F � Gi for our instance must satisfy

the condition

9 � 2 ðR2
Þ
�ðnÞ=2�1 : ½F�? � � þW	: ð7Þ

Recall that, for n 2 f3; 4; 6g, condition (7) is always satisfied

and one can proceed with Step 4. Otherwise, compute the set

SepW	 ð½Gi�
?Þ. By Theorem 2, this can be done efficiently. Note

that, for every i 2 f1; . . . ; cg, a subset F � Gi that satisfies

condition (7) has the property that ½F�? � P for a suitable

P 2 SepW	 ð½Gi�
?Þ. Finally, compute, for all i 2 f1; . . . ; cg and

for all P 2 SepW	 ð½Gi�
?Þ, the pre-images S :¼ ½P��? of P under

the star map. This can be done efficiently. Note that, with the

above restriction n =2 f3; 4; 6g, the star map is injective.

Step 4: If n 2 f3; 4; 6g, consider the equivalence classes

S :¼ Gi, i 2 f1; . . . ; cg, having the property that cardðGiÞ � N.

Otherwise, consider, for all i 2 f1; . . . ; cg and for all

P 2 SepW	 ð½Gi�
?Þ, the subsets S :¼ ½P��? of Gi having the

property that cardð½S��?Þ � N. Then apply A on each such S.

The instance is consistent iff A reports consistency for one of

the sets S. &

Note that for m ¼ 2 a polynomial-time algorithm A is

available; see e.g. Slump & Gerbrands (1982). There it is

shown how to set up a capacitated network that admits a

certain flow iff the consistency question has an affirmative

answer. Points in the grid correspond to arcs in this network. If

we want to forbid certain positions, we only have to cancel the

corresponding arcs. Hence we obtain Corollary 2 for Consis-

tency.

The proofs for Reconstruction and Uniqueness are

analogous.

Remark 21. Note that the seemingly more natural approach to

find subsets F � Gi first that conform to the X-rays, and check

then whether (7) is satisfied may lead to an exponential

running time. In fact, Fig. 9 gives a simple example with a

unique solution but exponentially many subsets of the grid

conforming to the X-ray data.
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Schreiber & P. Häussler, pp. 17–48. Berlin: Springer. http://
www.arxiv.org/math-ph/9901014.

Baake, M. & Grimm, U. (2004). Z. Kristallogr. 219, 72–80. http://
www.arxiv.org/math.CO/0301021.

Baake, M., Grimm, U. & Moody, R. V. (2002). Preprint. http://
www.arxiv.org/math.HO/0203252.

Baake, M. & Joseph, D. (1990). Phys. Rev. B, 42, 8091–8102.
Baake, M., Kramer, P., Schlottmann, M. & Zeidler, D. (1990a). Mod.

Phys. Lett. B4, 249–258.
Baake, M., Kramer, P., Schlottmann, M. & Zeidler, D. (1990b). Int. J.

Mod. Phys. B4, 2217–2268.
Baake, M. & Moody, R. V. (2000). Editors. Directions in Mathematical

Quasicrystals. CRM Monograph Series, Vol. 13. Providence, RI:
American Mathematical Society.

Basu, S., Pollack, R. & Roy, M.-F. (1996). J. ACM, 43, 1002–1045.
Basu, S., Pollack, R. & Roy, M.-F. (1997). J. Complexity, 13,

28–37.
Borevich, Z. I. & Shafarevich, I. R. (1966). Number Theory. New

York: Academic Press.
Buchberger, B., Collins, G. E. & Loos, R. (1982). Editors. Computing

Supplementum. Wien: Springer.
Cowley, J. M. (1995). Diffraction Physics. Amsterdam: North-

Holland.
Edelsbrunner, H. (1987). Algorithms in Combinatorial Geometry.

EATCS Monographs on Theoretical Computer Science, Vol. 10.
Berlin: Springer.

Edelsbrunner, H., O’Rourke, J. & Seidel, R. (1986). SIAM J. Comput.
15, 341–363.

Fewster, P. F. (2003). X-ray Scattering from Semiconductors, 2nd ed.
London: Imperial College Press.

Gähler, F. (1993). J. Non-Cryst. Solids, 153–154, 160–164.
Gardner, R. J. & Gritzmann, P. (1997). Trans. Am. Math. Soc. 349,

2271–2295.
Gardner, R. J., Gritzmann, P. & Prangenberg, D. (1999). Discrete

Math. 202, 45–71.
Gritzmann, P. (1997). Lecture Notes in Computer Science, edited by E.

Ahronovitz & C. Fiorio, pp. 19–32. London: Springer.
Gritzmann, P., Prangenberg, D., de Vries, S. & Wiegelmann, M.

(1998). Int. J. Imaging Syst. Technol. 9, 101–109.
Gritzmann, P., de Vries, S. & Wiegelmann, M. (2000). SIAM J. Optim.

11, 522–546.
Guinier, A. (1994). X-ray Diffraction in Crystals, Imperfect Crystals,

and Amorphous Bodies. New York: Dover.
Halperin, D. (2004). Handbook of Discrete and Computational

Geometry, 2nd ed., edited by J. Goodman & J. O’Rourke, pp.
529–562. Boca Raton, FL: Chapman and Hall/CRC.

Herman, G. T. & Kuba, A. (1999). Editors. Discrete Tomography:
Foundations, Algorithms, and Applications. Boston: Birkhäuser.
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